Making Your Bokeh Fascinating

Real-time Rendering of Physically Based Optical Effect in Theory and Practice SIGGRAPH 2015 Course

> Masaki Kawase Silicon Studio, Corp. masa@siliconstudio.co.jp

Introduction

- Basic idea and theory [Kawase08]
 - Only circular aperture
- Practical implementation and optimization [Kawase12]
 - Any kind of aperture shapes

Contents

- Creating the Pencil Map
- Creating the Bundle-of-Light-Ray Map (Pencil Map)
 - "Bundle of Light Rays" or "Pencil Rays" (referred to as "Pencil" here onwards)
- Application to Arbitrary Aperture Shapes
- Scattering or Gathering?
- Results
- Conclusion

Creating the Pencil Map

Creating the Pencil Map

- Precompute light paths from the aberration diagram
 - Takes spherical and axial chromatic aberrations into account

Amount of aberration Longitudinal aberration diagram

Silicon Studio

Light paths make up pencil map (small number of rays)

Pencil map

Circular Bokeh Rendering

- V coordinate represents the distance from the optical axis
 - Mapping each slice to a circle produces a circular 'bokeh'

Discretized Result...

- Chromatic aberration is an issue
- Three wavelengths (R/G/B) are insufficient to represent the dispersion

Increasing Wavelength Samplings

- Calculate the map with more wavelengths
- Convert into the RGB space

3-Wavelength Samplings

Sufficient Wavelength Samplings

Bokeh with Spherical and Chromatic Aberration

Zoomed-in view around the focal point

- Imperfect focus
- Front bokeh with red sharp edge
- Back bokeh with blue soft edge

Comparison with photographs

Generated from pencil map

Captured in real photographs

Creating the Pencil Map of Doublet

- Calculate the map with the longitudinal aberration diagram
- Using actual lens parameters (if they exist)
 - Only ray paths of each wavelength are required

Longitudinal aberration diagram

Silicon Studio

Light paths make up pencil map

Pencil map

Pencil Map of Doublet

Zoomed-in view around the focal point

Pencil maps and bokeh

Comparison with photographs

- Typical correction
 - Front bokeh has soft purple edge and the center is darker
 - Back bokeh has sharp green edge and the center is brighter

Front and back Bokeh with Pencil map

Front bokeh in photographs

Back bokeh in photographs

Different Type of Doublet

• Residual chromatic aberration is more visible than residual spherical aberration

Longitudinal aberration diagram

Light paths make up pencil map

Pencil map

Pencil Map of Doublet (Different Type)

Zoomed-in view around the focal point

Pencil maps and bokeh

Pencil Map of Doublet (Previous Type)

Zoomed-in view around the focal point

Pencil maps and bokeh

Comparison with photographs

Front and back Bokeh with Pencil map

Front bokeh in photographs

Back bokeh in photographs

Optimization of Pencil Map

- Wasteful parts in the texture
 - Sparse, many texels are empty
 - There is not enough precision around the more important 'focusing' texels

Wasteful pencil map

Optimization of Pencil Map (cont'd)

- Normalizing height of bundle at every distance(u-axis) by the maximum height(bokeh size)
- Less empty texels, and great improvement in precision around focusing texels

Wasteful pencil map

Normalized pencil map

Aspherical lens (chromatic aberration is not corrected)

Application to Arbitrary Aperture Shapes

Various Aperture Shapes

- Aperture shape is an important artistic factor
 - Typically 5~9 diaphragm blades
 - Changes from rounded to n-gon
- How to map pencil onto the polygonal aperture shape?
 - 3D Textures?
 - Too large, not practical

Aperture shape

Indirect Reference of Pencil Map

 Precompute an LUT texture that stores V coordinates of pencil map

Indirect Reference of Pencil Map (cont'd)

- LUT determines the aperture shape
 - Independent of pencil map
 - Can reproduce curved shapes of a diaphragm blade
 - Prepare a set of LUTs for various diaphragm conditions
 - Other shapes such as stars, hearts, ... can be used

Various LUTs

- For the number of diaphragm blades and opening levels
- Smooth deformation is possible by interpolating between two adjacent LUTs

Silicon Studio

Silhouette LUTs for debug

Silicon Studio

Scattering or Gathering?

Both can be Implemented

- Better quality by scattering
 - Heavy processing load
- Hybrid method is recommended
 - Both scattering and gathering

Hybrid Method

- To determine which pixels will be scattered or gathered, use:
 - The CoC size
 - Difference in luminance between neighboring pixels

Original

Result (green: gathering pixels)

Hybrid of Scattering and Gathering

lend

OMPOSER.

Optimization

- Use a half resolution buffer for scattering
 - Scattering process can be 16x faster
- Split the process into several passes with hierarchical resolution buffers
 - Use lower resolution for larger bokeh
 - The process at the 1/4 x 1/4 resolution can be 256x faster
- Scatter a pixel every 2x2 pixels for relatively larger bokeh in each resolution
 - Pixels that have an especially heavy processing load will be 4x faster

Results

Bokeh Simulation in Real Time

Front bokeh with red/purple fringes

Back bokeh with cyan fringes

Diaphragm Simulation 5-blade Aperture

Diaphragm Simulation 6-blade Aperture

Diaphragm Simulation 7-blade Aperture

Diaphragm Simulation 8-blade Aperture

Curved Diaphragm and Optical Vignetting

- Opening / Closing
 - Deformation
 - Circular aperture
 - Polygonal aperture
 - Rotation
 - Optical Vignetting
 - Cat's Eye Effect

5-blade Circular Aperture (with Optical Vignetting) f/1.4 (Fully Opened)

5-blade Circular Aperture (with Optical Vignetting) f/2 (1 Stop Closed)

5-blade Circular Aperture (with Less Optical Vignetting) f/2.8 (2 Stops Closed)

5-blade Circular Aperture (with No Optical Vignetting) f/5.6 (4 Stops Closed)

5-blade Circular Aperture (with Fake Diffraction Spikes) f/11 (6 Stops Closed)

Various Aberrations and Corrections

• Correction of SA and axial CA mostly affect bokeh

Differences between front and back bokeh

Spherical Lens (with No Corrections)

Aspherical Lens (with Chromatic Aberrations) Correction of Spherical Aberration

Achromatic Lens Corrected for Red and Blue Wavelengths

Achromatic Lens (Different Type) Corrected for Red and Blue Wavelengths

APO (Apochromatic) Lens Corrected for 3 Wavelengths (More Expensive Lens)

Almost Perfect Lens Without any Spherical and Longitudinal Chromatic Aberrations

STF (Smooth Transition Focus) Lens Soft Edged Bokeh by Apodization Optical Element

Radial gradient ND filter

Residual Aberration Visibility

Out of focus: Small Aberrations: Strongly Visible

Out of focus: Large Aberrations: Less visible

Residual Aberration Visibility

Out of focus: Large Aberrations: Less visible

Out of focus: Small Aberrations: Strongly Visible

.

Out of focus: Large Aberrations: Less visible

Out of focus: Small Aberrations: Strongly Visible

Comparison with Photographs (Achromat)

Real photographs with achromatic lens

Real-time simulation results

Comparison with Photographs (APO)

Real-time simulation results

Silicon Studio

Real photographs with apochromatic lens

Conclusion

Conclusion

- Reproduce photorealistic bokeh with pencil map and LUT
 - Pencil map defines bokeh characteristics
 - LUT defines bokeh shapes
- Optimization
 - Various options available
 - Combinations can be used to improve performance

References

- [Kawase08] Kawase, M. "Bokeh Expressions Based on Optics." *Computer Entertainment Developers Conference, 2008.*
- [Kawase12] Kawase, M. "Practical Implementation of Cinematic Lens Effects." *Computer Entertainment Developers Conference, 2012.*
- Kawase, M. "Reduce Artifacts Generated by Mipmapped Buffers." *Computer Entertainment Developers Conference, 2009.*
- Trávník, J. "On Bokeh." Jakub Trávník's resources. http://jtra.cz/stuff/essays/bokeh/index.html
- 安藤幸司 『光と光の記録「レンズ編」』 <u>AnfoWorld http://www.anfoworld.com/LensMF.html</u>
- 吉田正太郎(1997)『カメラマンのための写真レンズの科学』地人書館.