Recipes for Optical Effect System Design

Real-time Rendering of Physically Based Optical Effect in Theory and Practice SIGGRAPH 2015 Course

> Masaki Kawase Silicon Studio, Corp. masa@siliconstudio.co.jp

Contents

- Parameters
 - NOT Based on Optics
 - Based on Optics but NOT based on Photography
 - Based on Both Optics and Photography
- Optical Animation
 - Focus Breathing
 - Maximum Aperture Varying
- Handling "Law of Reciprocity" in Optics
- Conclusion

Optical Simulation Parameters

Use of Parameters Not Based on Optics

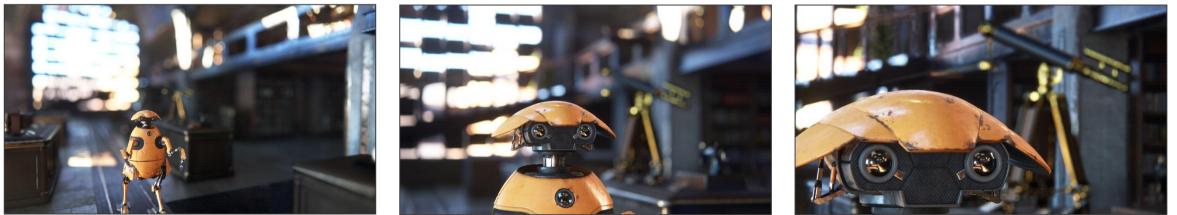
- Advantage
 - Artists are not limited by optical consistency
- Disadvantages
 - Output highly depends on artist
 - A lot of experiences or knowledge is necessary
 - Someone unfamiliar with photography may hardly notice unnatural results
 - Physically implausible results are frequently found
 - e.g. Bokeh in the background is too large compared to near and mid-range
 - Viewers who is familiar with photography may feel something is wrong

11

11

- -

Not me


11

11

- -

- F-number varies immoderately by focusing or zooming
- Too large bokeh in the background when FOV is wide
 - Miniature-looking scene

f/8.4

117

Ŧ

11

- CoC sizes in the background differ by focus distance and FOV
 - Wide FOV or far focus generates small bokeh
 - Narrow FOV or close focus generates large bokeh
- F-number should not change
 - Keep F-number constant when focusing
 - Minimum F-number may vary by zooming depending on its mechanism

Unnatural DOF Handling

Use of Parameters Based on Optics

- Calculate the required parameters from artist settings
 - Artist settings:
 - FOV, aperture, focus distance, etc.
- Advantages
 - Can keep optical consistencies
 - Less parameters to set
- Disadvantages
 - Artists are constrained by optical consistency
 - Artists may not control DOF as intended

Parameters NOT based on Photography

- The optical parameters might be still unnatural
 - 10,000mm of focal length
 - 0.1 of F-number
 - 1cm of focus distance with a telephoto lens
 - And more ...

A Frequently Made Mistake

- When you want to focus on a person and make a blurry background...
 - 1. Frame the person using a wide angle FOV
 - 2. Focus on the person
 - Hard to blur the background, so...
 - 3. Open the aperture until the background becomes blurred
 - F-number might become too small

⇒The scene becomes unnaturally miniaturized

The Wrong Way to Make a Background Blurry f/0.3 (Not Based on Photography)

Parameters Should be Based on Photography

- Not a matter of the aperture setting for the insufficient blur
 - Relationship between camera position and FOV does matter
 - Moving the camera further and zooming-in makes the bokeh larger
- Parameters not based on photography can cause unnatural looking results
 - Limiting optical parameters to a proper range
 - F-number should be from f/1.0 to f/32.0
 - f/2.0 or greater for zoom lenses
 - Lower limit of focus distance should be twice the focal length
 - i.e. Macro 1:1
 - etc.

Parameters Based on Photography

- The artist would have to move the camera and zoom-in
 - The result will look natural

Based on photography

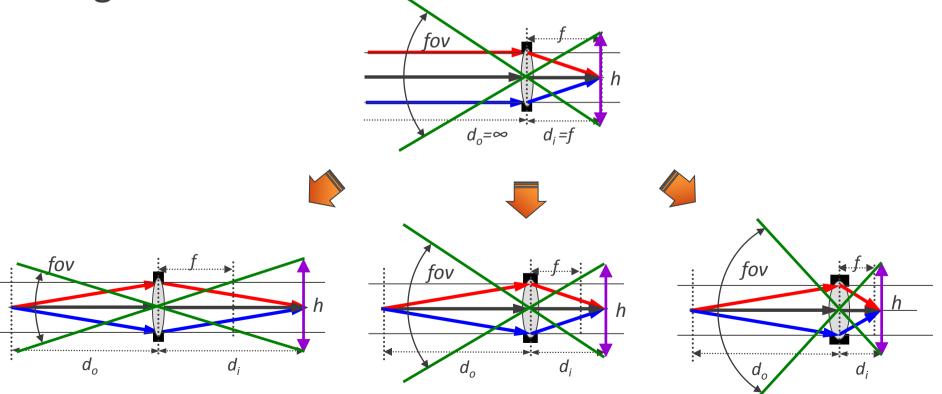
The Wrong Way to Make a Background Blurry f/0.3 (Not Based on Photography)

The Proper Way to Make a Background Blurry f/2.8 (Based on Photography)

Optical Parameter Animation

Optical Parameter Animation

- Focusing animation
- Zooming animation
- Focus breathing
- Maximum aperture varying when zooming
- Vignetting varying
- And more ...


Optical Parameter Animation

- Should the artists control all of them?
 - A lot of experience or knowledge is necessary
 - Focusing and breathing are exclusive knowledge
 - Output quality highly depends on artist's experience or knowledge
- Override the settings specified by the artists
 - Make the focusing animation automatic
 - Artists set only the target for focusing
 - Override the FOV by focus breathing
 - Override the minimum F-number depending on FOV
 - And more ...

Override FOV by Focus Breathing

Change the FOV depending on focus distance and focusing mechanism

1 Silicon Studio

Approximation of Focus Breathing

- Calculate current finite focus FOV from infinite focus FOV and focus distance
 - f = h / (tan(fov / 2) * 2) f: Focal length for infinite focus d_i : Image distance for infinite focus

 d_i' : Image distance for current finite focus (result of breathing) $fov' = \operatorname{atan}(h / (d_i' * 2)) * 2$ fov' : FOV for current finite focus (result of breathing)

-Optical effective focal length for the result of breathing

- $f' = d_i / s = f * sr / s = (d_0 h / 2) / (tan(fov' / 2) * d_0 + h / 2)$
- Will be shifted depending on focus distance and r
- -'r' is the degree of the focus breathing
 - You can control breathing by setting r from about -1 to 1

 $d_i = d_0 f / (d_0 - f)$

sr = pow(s, r)

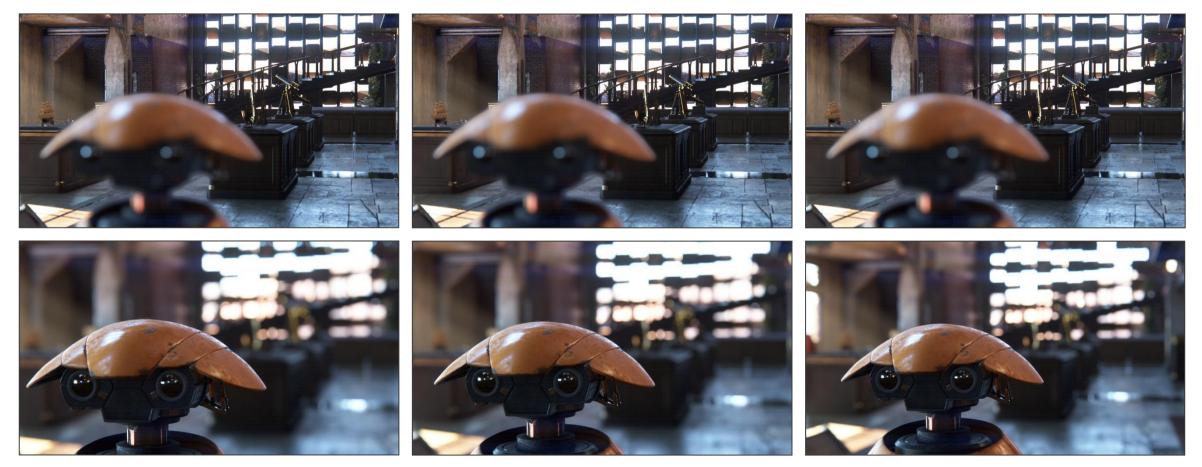
 $d_i' = f * sr$

 $s = d_i / f = d_0 / (d_0 - f)$

Degree of the Breathing: r

- 1.0 means that FOV will be narrow angle according to single lens rule
 - All-group focusing (typical macro lenses)
 - Optical focal length is always constant
- 0.0 means that FOV is constant (with no breathing)
 - The focal length become shorter instead of shifting image distance
 - Some expensive lenses
- -1.0 means that FOV will be wider angle when focus to finite
 - The focal length become much shorter
 - Typical internal focus lenses (less expensive lenses)
- Artists select *r* for each lens
 - Set 'r' directly
 - Select lens's focus mechanism

Close Focus (All-Group Focusing: r = 1)


Close Focus (with No Breathing: r = 0)

Close Focus (Inner Focusing: r = -1)

Upper: Far Focus Lower: Close Focus

Internal focusing (r = -1)

All-group focusing (r = 1) Silicon Studio With no breathing (r = 0)

Close Focus (All-Group Focusing: r = 1)

Close Focus (with No Breathing: r = 0)

Close Focus (Inner Focusing: r = -1)

Variable Maximum Aperture Zoom Lens

- Change minimum F-number depending on focal length
 - Limit the current F-number to minimum F-number
- Change the aperture shape depending on the ratio of current F-number to minimum F-number
 - From circular aperture to polygonal aperture

Wide

Silicon Studio

Narrow

Fully opened aperture

4 stops closed aperture

Approximation of Variable Aperture Zoom Lens

- Calculate current minimum F-number from base minimum F-number and FOV and current FOV
 - f = h / (tan(fov / 2) * 2) f: Base focal length
 - f' = h / (tan(fov' / 2) * 2) F' = F * pow(f' / f, 1 q) f' : Current focal length F' : Current minimum F-number
 - -Above parameters are all at infinite focus
 - fov is base field of view
 - *f* is base focal length
 - *F* is base minimum F-number (maximum aperture)
 - *fov'* is current field of view
 - f' is current focal length
 - *F'* is current minimum F-number

-q' is the degree of maximum aperture varying

• You can control maximum aperture shifting by setting q from about 0.5 to 1

Degree of the Maximum Aperture Varying: q

- 1.0 means that minimum F-number is constant
 - Some expensive lenses
- 0.5 means that minimum F-number will shift by focal length
 - If the focal length gets 4 times longer, then minimum F-number becomes 2 times greater
- 0.0 means that minimum F-number is in proportion to focal length
 - If the focal length gets 4 times longer, then minimum F-number becomes 4 times greater
- Most lenses are from 0.7 to 1.0
- Artist select *q* for each lens
 - Set base minimum F-number and 'q' directly
 - Set a combination of minimum F-numbers
 - From product lens specifications

Approximation of Variable Aperture Zoom Lens

• You can calculate *q* from a combination of apertures

 $-q = 1 - \log(F2 / F1) / \log(f2 / f1)$

- Examples of product lens specifications
 - 9-18mm F4.0-5.6
 - f1 = 9, f2 = 18, F1 = 4.0, F2 = 5.6
 - $q = 1 \log(5.6 / 4.0) / \log(18 / 9)$
 - *q* = 0.5
 - 18-135mm F3.5-5.6
 - (f1, f2, F1, F2) = (18, 135, 3.5, 5.6)
 - $q = 1 \log(5.6 / 3.5) / \log(135 / 18)$
 - *q* = 0.7707
 - 24-70mm F2.8 (the lens that have constant minimum F-number for all range FOV)
 - (f1, f2, F1, F2) = (24, 70, 2.8, 2.8)
 - $q = 1 \log(2.8 / 2.8) / \log(70 / 24)$
 - *q* = 1.0

Silicon Studio

30mm (Maximum Aperture f/2.8)

75mm (Maximum Aperture f/4.5: q = 0.5)

-

150mm (Maximum Aperture f/6.3: q = 0.5)

150mm (Maximum Aperture f/2.8: q = 1.0)

Upper: *q* = 0.5 (30-150mm F2.8-6.3) Lower: *q* = 1.0 (30-150mm F2.8)

Silicon Studio

Parameters which Should be Controlled Automatically

- Varying without photographer's will in actual lens
 - Due to lens mechanisms

Examples of the Parameters which Should be Controlled Automatically

- Focusing
 - Focusing animation
 - Auto focus confusion
 - Focus breathing
- Zooming
 - Zooming animation
 - Aperture varying
 - Miss focus when zooming
 - Some compact digital cameras
 - Vignetting varying
- Camera nodal point
 - Shift the camera position to NPP (No-Parallax Point)
- Auto-exposure adjustment
- etc.

Handling "Law of Reciprocity" in Optics

Which is Better?

• Handling "Law of Reciprocity" strictly

or

• Exposure is independent of shutter speed and aperture

Handling "Law of Reciprocity" Strictly

- For example
 - If open the aperture, an exposure amount must increase
 - If reduce an exposure amount without varying aperture, shutter speed must be faster
- Optical consistencies are perfectly kept

Handling "Law of Reciprocity" Strictly (cont'd)

- Set scene photometric quantities (luminance, illuminance etc.) and ISO sensitivity properly, or exposure will miscarry
 - In spite of decreasing the exposure, the scene keeps white
 - In spite of increasing the exposure, the scene keeps black
- Hard to control
 - Exposure
 - DOF
 - Motion blur

Exposure is Independent of Shutter Speed and Aperture

- For example
 - F-number is only used for handling "Depth Of Field"
 - Shutter speed is only used for handling "Motion Blur"
 - Independent exposure is only used for handling "Exposure"
- Artists can control optical parameters easily
- Optical consistencies are not perfectly kept
 - Viewers who is familiar with photography might feel unnatural

Handling "Law of Reciprocity" in Optics

• Better approach to handling reciprocity is to do it in a way that fulfills your objectives

Conclusion

Conclusion

- Optics allows us to achieve physically plausible results
 - Parameters not based on photography can cause unnatural results even with optics
 - Limit optical parameters to proper ranges for natural looking results

Conclusion (cont'd)

- You can use derived parameters from camera mechanism
 - Excluding external input from the photographer
- "Law of reciprocity" should be selectively used depending on the purpose

References

• Kawase, M. "Optics knowledge to achieve attractive images." *Computer Entertainment Developers Conference, 2010.*

